Hyper Spectral Image Processing Session Chair: Ramseyer Focus

Speaker	Author	Title The FrameWork: An Open-	Phone Number	e-mail	Company	Paper Received
1	Ramseyer, Spetka, Gilmour and Linderman	Architecture for Hyperspectral Image Exploitation High Performace Computing	315-330-3492	George.Ramseyer@rl.af.mil	AFRL/IF	
2	2 Gilmore, Palk and Eismann	Pairwise Adaptive Linear Matched Filter	937-255-5922x291	Michael.Eismann@wpafb.af.mil	AFRL/SN	19
3	Anderson, Lauer, Hoke, Adler- Golden, Berk, Bernstein, Braunstein, Grot, Matthew and Sundberg	Atmospheric Correction for Hyperspectra Imaging Exploitation: Code Parallelization for CHSSI	303-497-6833	gail.anderson@noaa.gov	AFRL/VS	62
2	Coolbaugh, Yerkes and Hoffman	Implementation of Proven Hyperspectral Algorithms in a Portable, Scalable HPC Environment Parallel Processing of Hyperspectral	619-553-6639	<u>ejc@spawar.navy.mil</u>	SPAWAR-SSC-SD	61
Ę	5 Stolovy and Der	Analysis	301-394-5234	stolovy@arl.army.mil	ARL	60
6	Bettenhausen, Gillis and Bowles	of NRL's ORASIS Algorithm	202-404-1021	Jeffrey.Bowles@nrl.navy.mil	NRL	

Over the last several years, major advances have been made in hyperspectral imaging sensor technology. High performance computing for hyperspectral image processing is an active research area in which the capability of rapidly processing new and stored hyperspectral data is being developed. The parallelization of hyperspectral algorithms, several of which will be discussed in this session, is designed for increased openness, portability, scalability and overall performance. The integration of these and similar algorithms into an information system, which will also be discussed, allows the achievement of an asymmetric advantage of this advanced sensor technology for information superiority. This developing technology will have a fundamental effect on the processing and dissemination of future hyperspectral image products.

Breakout