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Neuromorphic computing refers to computational paradigms that are inspired by the way the 

human brain processes information and thus are intended to be similar to the neuro-biological 

architectures present in the nervous system.  Neuromorphic engineering, which includes 

neuromorphic computing, was a concept developed by Carver Mead in the late 1980s, describing 

the use of very-large-scale integration (VLSI) systems containing electronic analog circuits to 

mimic the signal processing in the brain, although modeling of neuronal computation goes back 

to the 1940s.  In the beginning, neuromorphic systems were single chip devices that emulate 

peripheral sensory transduction such as silicon retina and silicon cochlea.  These artificial neural 

systems have demonstrated amazing performance in image and speech processing.  Gradually 

the emulation moved further up to the central nervous system such as the olfactory cortex and 

visual cortex.  Many neuromorphic systems have been implemented by software programs in 

conventional digital computers and applied to a multitude of problems including speech and 

image recognition.  In the last decade, implementation of neuromorphic systems has included the 

building of artificial brains. 

 

The way the brain computes is very different from conventional digital computers which are 

based on the von Neumann architecture with the fetch, compute, and store paradigm with 

arithmetic logic unit and memory units.  The brain on the other hand consists of neurons and 

synapses that connect the neurons together, and the computation and memory are distributed and 

integrated throughout the brain.  While the computational algorithms and information 

representations are largely unknown, it is clear that instead of binary Boolean logic and precise 

digital synchronous operations, the brain and central nervous system uses sparse distributed 

representations, massively parallel mechanisms, extensive adaptations and self-organization and 

learning.  How the brain achieve intelligence is not yet completely understood.  But by building 

computing machine that is similar to the brain, it is hoped that neuromorphic computers would 

achieve a certain level of intelligence. 

 

Neuromorphic computing is all about neurons, synapses, learning, and memory.  The most 

common model of a neuron is summing amplifier or integrate and fire neuron.  Synapse serves to 

interconnect the neurons together and also serve as storage memory.  Most common learning 

algorithm is error back propagation and steepest descend weight adaptation.  In this tutorial 

course, the attendees will learn what neuromorphic computing is all about, and will be able to 

apply it to problems such as image processing, object recognition, speech recognition, decision 

making, machine learning, and autonomous systems.  The attendee will learn a short history of 

neuromorphic computing, various ways of connecting the neurons and synapses, computational 

architectures and learning algorithms including Deep Learning, application such as object 

recognition, and some of the research challenges.  The attendee will learn about the several state-

of-the-art neuromorphic systems, both the hardware and software.  Finally the attendee will have 

an opportunity to experiment and program with these state-of-the-art neuromorphic systems. 
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Abstracts 

   

1. Brief history of neuromorphic computing 

Dr. Clifford Lau 

 

 Neuromorphic computing (NC) refers to computational architectures and algorithms that are 

inspired by the way human brain processes information to solve problems and make decisions. 

Modeling of neuronal computation goes way back to the 1940s.  In 1943 McCulloch and Pitts 

showed that neurons can be modeled as a simple threshold device to perform logic function.  By 

the late 1950s and early 1960s, neuron models were further refined into Rosenblatt’s Perceptron 

and Widrow and Hoff’s Adaptive Linear Neuron (Adaline).  During the 1970s, Steven Grossberg 

at Boston University and Teuvo Kohonen at Helsinki University were making significant 

contributions.  Grossberg, together with Gail Carpenter, had developed a model architecture they 

called adaptive resonance theory (ART) based on the idea that the brain spontaneously organized 

itself into recognition codes. In the 1980s, neuronal modeling was given an impetus when John 

Hopfield published a paper in the Proceedings of the National Academy of Sciences followed by 

another paper in Science. That led to the explosive research growth in artificial neural networks 

(ANN), including the forever popular Hopfield Nets and Multilayer Perceptrons (MLP). 

Advances in the very large scale integrated circuits (VLSI) technology ushered in the field of 

neuromorphic engineering (a term coined by Carver Mead) in the mid-1980s to reflect that the 

engineered electronic systems are designed to emulate the computational capabilities of the brain 

and the network of neurons and synapses.  Carver Mead, together with a large number of 

prominent scientists (Max Delbruck, John Hopfield, Richard Feynman, Christof Koch, Terry 

Sejnowski, Rodney Douglas, Andreas Androu, Paul Mueller, and others), made convincing 

argument that neuromorphic circuits are ideal for implementing the computational principles 

exhibited in the brain.  Today, the most popular ANN, with application in image recognition, is 

Deep Learning (DL), which is basically an MLP with lots of layers and millions of synaptic 

weights, and Convolutional Neural Net (CNN). 

 

 

2. Survey of neuromorphic computing and neural networks in hardware 

Dr. Catherine Schuman 

 

 Neuromorphic computing has come to refer to a variety of brain-inspired computers, devices, 

and models that contrast the pervasive von Neumann computer architecture.  This biologically 

inspired approach has created highly connected synthetic neurons and synapses that can be used 

to model neuroscience theories as well as solve challenging machine learning problems. The 

promise of the technology is to create a brainlike ability to learn and adapt, but the technical 

challenges are significant, starting with an accurate neuroscience model of how the brain works, 

to finding materials and engineering breakthroughs to build devices to support these models, to 

creating a programming framework so the systems can learn, to creating applications with brain-

like capabilities. In this work, we provide a comprehensive survey of the research and 

motivations for neuromorphic computing over its history. We begin with a 35-year review of the 

motivations and drivers of neuromorphic computing, then look at the major research areas of the 

field, which we define as neuro-inspired models, algorithms and learning approaches, hardware 

and devices, supporting systems, and finally applications. We conclude with a broad discussion 



on the major research topics that need to be addressed in the coming years to see the promise of 

neuromorphic computing fulfilled. The goals of this work are to provide an exhaustive review of 

the research conducted in neuromorphic computing since the inception of the term, and to 

motivate further work by illuminating gaps in the field where new research is needed. 

 

 

3. Hardware implementations 

 Prof. Nathaniel Cady 

 
 Neuromorphic computing systems seek to emulate biological neural functionality emulated in either 

software or electrical hardware.  A key function for such systems is their ability to learn and adapt. In the 

human brain, such learning and adaptation is achieved via modulation of synaptic connections between 

different neurons. My research group has focused on the implementation of non-volatile memory 

elements (primarily memristors) for synaptic functionality in hardware-based neuromorphic circuits. 

Memristors, which can be implemented as resistive random access memory (RRAM) are a novel form of 

non-volatile memory expected to replace a variety of current memory technologies and enabling the 

design of new circuit architectures. Investigations of ReRAM as a storage technology have shown a 

combination of high storage density with fast access and write speeds. Recently, the endurance and 

reliability of ReRAM cells have reached the level at which they are competing with commercially 

available Flash memory and CMOS technologies, making ReRAM a viable candidate for data storage and 

novel logic and security architectures. 

  

In this presentation, I will review multiple approaches for integrating non-volatile memory elements 

(such as memristors) with CMOS, to yield functional neuromorphic circuits. In addition, I will explore 

the multi-level / analog behavior of some classes of memristors, which can be utilized for high density 

memory storage and for setting a range of synaptic weight values per individual (or pairs) of memristive 

devices.   

 

 

4. Design and programming methodology 

 Prof. James Plank 

 

 Adapting applications to leverage neuromorphic devices is a challenging task.  This is both 

from the application perspective and the device perspective.  From the application perspective, 

application state must be transformed effectively into neuromorphic input, and neuromorphic 

output must be interpreted effectively by the application.  From the design perspective, 

neuromorphic devices must be "programmed" to control or solve an application.  This talk will 

focus on application design for neuromorphic computing, and on neuromorphic 

learning/programming techniques.  It will not include deep learning, since that will be the topic 

of another tutorial talk.  It will include genetic algorithms, spike timing-dependent plasticity 

(STDP), and reservoir computing. 

 

 

5. Roadmap to achieve large neuromorphic hardware systems 

 Prof. Jennifer Hasler 

 

 Neuromorphic systems are gaining increasing importance in an era where CMOS digital 

computing techniques are reaching physical limits. These silicon systems mimic extremely 



energy efficient neural computing structures, potentially both for solving engineering 

applications as well as understanding neural computation. Toward this end, the authors 

provide a glimpse at what the technology evolution roadmap looks like for these systems 

so that Neuromorphic engineers may gain the same benefit of anticipation and foresight 

that IC designers gained from Moore’s law many years ago. Scaling of energy efficiency, 

performance, and size will be discussed as well as how the implementation and application 

space of Neuromorphic systems are expected to evolve over time. 

 

 

6. Deep learning 

 Dr. Wilfried Haensch 

 

 The recent success of machine learning and deep learning networks in image recognition, 

speech and language processing stress computational resources. Training of these very large 

networks with millions of parameters (weights) can take weeks on current hardware. Inherent in 

these workloads is that the underlying algorithms are noise tolerant and amenable to low 

precision computation. Custom hardware is created to take advantage of this situation. Reduced 

precision digital solutions are emerging first for inferencing and are expected to tackle training as 

well soon. The question at hand is: once the avenue of reduced precision has reached its end 

what is the next step to address performance bottlenecks?  

 

 Performance in deep learning applications is determined by two factors: (1) computational 

efficiency, that is performing the mathematical operation that are required, and (2) bringing the 

relevant data, the weights on which the computation is performed, from the memory to the 

compute unit. Reduced precision will address both, however it will never eliminate movement of 

data.  

 

 One intriguing solution to the problem of weight related data movement is to capture the 

weights in arrays of nonvolatile memory and to perform the required computations locally on 

these arrays. It turns out, however, that existing memory materials are ill suited for this problem. 

Memory materials are optimized for a few reproducible bit states, whereas their application in 

deep learning networks requires almost analog switching behavior with a reversible response to 

pulse stimulation of opposite polarity.  

 

 To take advantage of this new architecture two possible solution can be pursued: (1) adjust 

the control circuitry to accommodate the imperfect switching behavior of current available 

materials, like PCM or RRAM; and (2) find a suitable material and architecture that cam 

maximize the benefit. Initial estimates show that a more than 10,000 times speed increase could 

be feasible at significantly reduced power if the architecture can take advantage of an optimized 

switching material. Enhancement factors of this magnitude will open the possibility of local 

learning on mobile devices or intelligent devices at the edge of the network. 

 

 

 

7. DesignWare EV6x embedded vision processor with DL and CNN for ADAS application 

 Gordon Cooper, Synopsys 



 The technological demands at the heart of embedded vision applications, in the neural 

network, require solutions that deliver the combination of high precision and performance with 

low power and area use.  The unique combination of the vector DSPs and programmable CNN 

engine in the DesignWare EV6x Vision Processor enables developers to implement vision 

functionality in their embedded devices with much higher performance efficiency than CPU- and 

GPU-based alternatives. 

 The DesignWare EV6x Processor family integrates scalar, vector DSP and CNN processing 

units for highly accurate and fast vision processing. The EV6x supports any convolutional neural 

network, including popular networks such as AlexNet, VGG16, GoogLeNet, Yolo, Faster R-

CNN, SqueezeNet and ResNet. Designers can run CNN graphs originally trained for 32-bit 

floating point hardware on the EV6x’s 12-bit CNN engine, significantly reducing the power and 

area of their designs while maintaining the same levels of detection accuracy. The engine 

delivers power efficiency of up to 2,000 GMACs/sec/W when implemented in 16-nm FinFET 

process technologies (worst-case conditions). The EV6x’s CNN hardware also supports neural 

networks trained for 8-bit precision to take advantage of the lower memory bandwidth and power 

requirements of these graph types. 

 To simplify software application development, the EV6x processors are supported by a 

comprehensive suite of tools and software. The latest release of the DesignWare ARC® 

MetaWare EV Development Toolkit includes a CNN mapping tool that analyzes neural networks 

trained using popular frameworks like Caffe and Tensorflow, and automatically generates the 

executable for the programmable CNN engine. For maximum flexibility and future-proofing, the 

tool can also distribute computations between the vision CPU and CNN resources to support new 

and emerging neural network algorithms as well as customer-specific CNN layers. Combined 

with software development tools based on OpenVX™, OpenCV and OpenCL C embedded 

vision standards, the MetaWare EV Development Toolkit offers a full suite of tools needed to 

accelerate embedded software development. 

 

8. Intelligent machines 

 Dr. Winfried Wilcke 

 

 While Deep Learning networks have made huge strides in image recognition, speech 

processing and similar pattern recognition tasks, this is only the beginning on the long path to 

creating truly intelligent machines, also called general or strong artificial intelligence. 

 

 Current deep learning networks are very superficially inspired by the brain in that they 

consist of layers of neurons connected with synapses of varying weights, but that's where the 

similarity ends. The fundamental operation of (most) artificial neural networks is based on 

supervised training, where the network receives some known and human labeled input ("this is a 

cat"), then compares the current output of the network with the desired output and tweaks the 

values of synapses until the difference (error) is minimized. Mathematically this corresponds to 

minimizing an error function in a very high dimensional space by tools like stochastic gradient 

descent. We can be certain that this is NOT at all how the brain works. A symptom is that today's 

neural network may need tens of thousands of cat images to learn to recognize cats, whereas a 



child may need to be told only a few times that this is a cat. Moreover, humans learn 

continuously and new knowledge usually doesn't damage prior knowledge, whereas today's 

neural networks (except for reinforcement learning) need to have a clear separation between 

training phase and execution (or inference) phase and they are very brittle when trying to add 

new knowledge. 

 

 Machines will only become intelligent in the human sense if they develop 'common sense' 

and reasoning which is the ultimate challenge for general intelligence. A common sense 

statement like "Clouds pay no taxes" is obvious to us, but a machine needs to learn a huge 

amount of facts about the world to even have a concept of taxes, clouds and any relationship 

between them (none in this case). This requires an intelligent machine - like a child - to 

autonomously develop a detailed model of the world and the relations between the elements in 

this world. 

 

 It is likely that elements of such world models can form autonomously in the brain or an 

intelligent machine based on a specific mathematical concept (hierarchical sparse distributed 

representations), where sensory inputs form an invariant hierarchy of ever more complex model 

elements. However, this bottom up approach will take a long time to bring to fruition, so a hybrid 

approach where some preprocessing is done with conventional networks is currently being 

developed. 

 

 The potential of this approach has been demonstrated by building several two-legged robots 

which learned on their own - without explicit programming - how to walk without falling down. 

A new type of neural supercomputer (Escape 9000) is being built by IBM to accelerate the 

research into the algorithms underlying intelligent machines.  We will shortly discuss a possible 

wafer-scale implantation of Escape 9000 called Shannon. 

 

 

9. Efficient machine learning inference acceleration in the cloud 
Andy Walsh, Xilinx 

 

 This demo will allow users to get a look at Xilinx’s machine learning software stack using 

FPGA F1 instances on the Amazon EC2 Public cloud.  The demo will highlight accelerated 

image classification using a modern neural network model such as ResNet50. It’s implemented 

through the open source frameworks, such as Caffe and accelerated with the Xilinx Deep Neural 

Network library to be fully optimized, delivering the highest compute efficiency for 8 bit 

inference. 


